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ABSTRACT 
 
    A one-dimensional analysis method for evaluating adhesively bonded joints composed of 
anisotropic adherends and adhesives with nonlinear material behavior is presented in the proposed 
paper.  The strain and resulting stress field in a general, bonded joint overlap are determined by 
using a variable-step, finite-difference solution algorithm to iteratively solve a system of first-order 
differential equations.  Applied loading is given by a system of combined extensional, bending, and 
shear forces that are applied to the edge of the joint overlap.  Adherends are assumed to behave as 
linear, cylindrically bent plates using classical laminated plate theory that includes the effects of 
first-order transverse shear deformation.  Using the deformation theory of plasticity and a modified 
von-Mises yield criterion, inelastic material behavior is modeled in the adhesive layer.  Results for 
the proposed method are verified against previous results from the literature and shown to be in 
excellent agreement.  An additional case that highlights the effects of transverse shear deformation 
between similar adherends is also presented. 
 
Keywords:   joining, anisotropic adherends, adhesive bonding, inelastic yield criterion, shear 

deformation 
 
 
INTRODUCTION 

 
Joining metallic and composite structural components with adhesively bonded joints has become a 

relatively routine and common practice in the technologically advanced aerospace and automotive 
sectors [1-4].  Finite element methods (FEM) or simple special purpose codes (e.g., one- or two-
dimensional analytical methods) are primarily used to obtain the final joint designs in these situations 
with subsequent verification of the design through testing.  The special purpose codes are generally 
efficient, user-intensive, and lend themselves to conducting parametric studies; however, they are 
limited to one- or two-dimensional analyses of specific joint configurations.  Conversely, FEM are 
capable of evaluating joints with complex geometry and loading, but are very inefficient for 
conducting design studies and have serious problems with convergence of analysis results in the 
regions of interest, i.e. the ends of the joint overlap.  The convergence problems are mainly due to the 
discontinuity in the normal or peel stress at the ends of the overlap, and are manifested by 
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decreasing the size of the finite element mesh in those regions.  The analysis method in the proposed 
paper was developed to provide efficient tailoring of various joint configurations while incorporating 
features such as anisotropic adherend behavior, inelastic adhesive behavior, and first-order shear 
deformation. 

The initial characterization of the problems and analysis difficulties associated with an adhesively 
bonded joint was the classical shear-lag analysis of a single-lap joint by Volkersen [5].  Volkersen 
identified the incremental deformation of the adherends, but failed to incorporate bending of the 
adherends that leads to an overall rotation of the joint.  This important physical behavior of a single-
lap joint was identified in the classical works of both de Bruyne [6] and Goland and Reissner [7].  
Specifically, they accounted for the eccentricity that is present between the applied tensile loading in 
these joints, identified the resulting bending response, and characterized the multi-axial strain state in 
the adhesive.  Additionally, Goland and Reissner further characterized the single-lap joint behavior by 
formulating a solution for the normal stress perpendicular to the bonded surface in addition to the 
previously described shear strain.  Numerous research studies have been conducted since these 
classical formulations and much of the early work is found in the excellent reviews by Bensen [8], 
Sneddon [9], Kutcha [10], and Mathews [11] et al.  Of these early works, notable advancements for 
adhesively bonded joints with composite adherends were made by Erdogan and Ratwani [12], Hart-
Smith [13-16], Wah [17], Renton and Vinson [18], and Srinivas [19]. 

The research performed by Erdogan and Ratwani developed one of the early analytical solutions 
for a stepped-lap joint configuration, assumed the adherends to be in a state of plane stress, and 
provided for orthotropic adherend properties.  Their solution for the shear stress in an isotropic, 
elastic adhesive was determined using a strength of materials approach that provided a closed form 
solution to a system of ordinary differential equations and boundary conditions that were geometry 
specific.  Wah used a similar strength of materials approach for determining the shear and normal 
stress in a single-lap joint while using classical laminated plate theory to describe the constitutive 
behavior of the adherends. 

Hart-Smith’s voluminous works on the behavior of single, double, stepped-lap, and scarf joints 
have been widely used by the adhesively bonded joint community.  His analytical solutions 
incorporated the effects of adhesive plasticity as well as thermal mismatch and stiffness imbalance 
between adherends that resulted in efficient codes for performing parametric studies on a wide array 
of joint configurations.  Another important aspect of Hart-Smith’s research was the detailed 
characterization of failure modes in bonded joints with both isotropic and composite adherends. 

An important characteristic of adhesively bonded joints with composite adherends is the low 
transverse stiffness that is often present as a result of the high and ultra-high modulus fibers combined 
with much lower-modulus polymer resins.  Thus, the through-the-thickness properties tend to be 
dominated by the polymer matrix resulting in a lower transverse stiffness when compared to the in-
plane values.  Many of the analyses in the early 1970’s had incorporated the multi-directional 
material properties of composite laminates, but had neglected the relatively low transverse stiffness 
possessed by many of the composite material systems when compared to their isotropic counterparts.  
Renton and Vinson as well as Srinivas accounted for these low transverse stiffness effects by 
including first-order shear deformation in their formulations.  The method developed by Renton and 
Vinson was an analytical solution of a single-lap joint geometry that included shear deformation for 
the composite adherends, and determined the linear elastic response for the adherends and adhesive.  
Srinivas developed a similar method for single-lap, double-lap, and flush joints that included shear 
deformation as a part of the analytical solution while attempting to approximate the nonlinear 
geometric effects. 
The more recent works by Bigwood and Crocombe [20,21], Yang [22,23] et al., and Tsai and Morton 
[24] have made significant advances in the analysis of adhesively bonded joints with composite 
adherends.  Bigwood and Crocombe developed a general joint overlap methodology for evaluating 
isotropic, adhesively bonded joints with inelastic adhesive behavior and subjected to combined 
loading.  By including inelastic adhesive behavior, significant yielding of the adhesive occurred for 



highly loaded joints.  This adhesive yielding transferred additional loading to the interior of the 
adhesive overlap that resulted in a more fully stressed adhesive layer.  Yang et al. formulated a 
method using classical laminated plate theory with first-order shear deformation to analyze symmetric 
and asymmetric single-lap joints subjected to tensile and bending loading.  Tsai and Morton evaluated 
the three-dimensional strain field present in a tension-loaded, single-lap composite joint. 

The current emphasis to develop stiffness tailored wing structures for aircraft applications requires 
a rapid analysis tool that includes anisotropy of adherends and inelastic adhesive behavior for 
identification of preliminary bonded joint configurations.  The present paper will describe the 
proposed analysis method for evaluating general, adhesively bonded joint overlaps with anisotropic, 
shear-deformable adherends and inelastic adhesive behavior that are subjected to combined tensile, 
shear, and bending moment loading. 
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ANALYTICAL DEVELOPMENT 
 

A description of the basic geometry and a differential element for a joint overlap that is contained 
within a general adhesively bonded joint is shown in Fig. 1.  The adhesively bonded joint is 
composed of two laminated composite plates, referred to as upper and lower adherends, and an 
adhesive layer.  The adherends are assumed to behave as linear elastic, cylindrically bent plates under 
a plane strain condition while the adhesive layer is modeled as a nonlinear, isotropic material.  
Specifically, components of shear and normal stress within the adhesive layer are nonlinear functions 
of the adhesive strains.  Additionally, the effects of transverse shear deformation in the adherends are 
approximated.  This is accomplished by relaxing the requirement from classical plate theory that lines 
normal to the cross-section remain normal, which is referred to as first-order shear-deformable, 
laminated plate theory.  As a result of the assumption of cylindrical bending, only a cross-section of 
the entire joint is modeled; therefore, the loading in the figure is given in terms of a unit width joint.  
Superscript letters, U for the upper adherend and L for the lower adherend, identify variables and 
loading for each adherend while equivalent terms for the adhesive layer do not have any special 
notation. 

The Euler-Lagrange equations of equilibrium are given in Eqns. (1)-(3) where Ni represents an  
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in-plane force term and q is a transverse applied load.  The variables Nij and Mij are the familiar stress 
and moment resultants, respectively.  Additionally, the displacements uo, vo, and wo are the midplane 
displacements in the x, y, and z coordinate directions, respectively.  The equilibrium equations are 
used along with the infinitesimal strain tensor, the constitutive relationships for an anisotropic, 
laminated plate, and the displacement field for a shear-deformable laminated plate to form a 
kinematic relationship between the forces and moments and the displacements and rotations.  The 
displacement field for a laminate using first-order shear-deformable plate theory is provided in Eqns. 
(4)-(6) where xφφφφ  and yφφφφ  correspond to the rotation of a transverse normal about the y and x axes, 

 
 ( , , ) ( , ) ( , )o xu x y z u x y z x yφφφφ= += += += +  (4) 
 
 ( , , ) ( , ) ( , )o yv x y z v x y z x yφφφφ= += += += +  (5) 

 
 ( , , ) ( , )ow x y z w x y====  (6) 
 

respectively.  The former displacement field can be used to generate kinematic relations shown in 
Eqn. (7) using the infinitesimal strain tensor, ijεεεε , which is written in terms of normal and engineering 
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shear strains.  The constitutive relationship for an anisotropic, laminated plate is given in Eqns. (8) 

and (9), where the ijQ  terms are referred to as the transformed, reduced-stiffness properties that are 

derived from the plane stress, reduced- stiffnesses.  Components of the stress tensor, ijσσσσ , are written 
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in terms of normal and engineering shear stress.  Therefore, Eqns. (4)-(9) are used to form the 
kinematic relationship given in Eqn. (10) where the A, B, and D matrices are the common 
extensional, bending, and extensional-bending coupling stiffness matrices from laminated plate  
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theory.  In addition to the relationship in Eqn. (10), another kinematic relationship is required that 
relates the transverse shear forces, xQ  and yQ , to the strains.  This necessary relationship is obtained 

by integrating Eqn. (9) through the thickness of the laminate using the definition of the transverse 
shear forces, Eqn. (11), and substituting the displacement field in Eqns. (4)-(6).  This provides Eqn.  
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(12), where A44 , A45 , and A55  are additional extensional stiffness terms and sK  is a shear correction  
 

 44 45

45 55

,

,
y o y y

x o x x

A A w

A A w

φφφφ
φφφφ

+     
=     +     

s

Q
K

Q
 (12) 

 



factor.  Although the application of a shear correction factor to the right hand side of Eqn. (11) is 
traditional, a brief explanation for the use of this factor in the present study is in order. 

A well-known fact from elementary beam theory that also applies to plates is that the transverse 
shear stresses are parabolic in the thickness direction.  However, looking back at the earlier described 
strain field in Eqn. (7), it is evident that the transverse shear strains are represented as constant values 
through the thickness of the plate.  This characterization of the transverse shear strains is a result of 
assumptions made for the displacement field.  Since the transverse shear strains are constant through 
the thickness of the plate, the resulting shear stresses are also constant.  Although there are no 
provisions within the kinematics of first-order shear-deformable plate theory to remedy the 
inconsistency between the actual parabolic variation of transverse shear stress and the assumed 
constant value, the values of the shear forces may be corrected by applying a shear correction factor 
to the stiffness matrix.  This has the result of modifying the transverse shear stiffness of the plate.  
Additionally, the values for an appropriate shear correction factor can vary with extensional stiffness, 
Poisson’s ratio, transverse shear stiffness, and geometry for a given plate [25-27].  Thus, to perform 
the analyses in the present study in a uniform manner, a value of one was chosen for the shear 
correction factor. 

Expressions that relate the unit width joint loading and the adhesive stresses are formulated using 
force and moment equilibrium in the horizontal and vertical directions on each free-body diagram in 
Fig. 1b.  The overlap section is divided at the mid-plane of the adhesive layer, which provides half of 
the total adhesive thickness along the bottom surface of the upper adherend and half along the upper 
surface of the lower adherend.  Summing forces in the direction of the positive x and z-axes and 
moments about the y-axis through the mid-plane of each adherend, the state of equilibrium is shown 
in Eqns. (13)-(15) for the upper adherend where Uh  is the upper adherend height and t is the total 
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adhesive thickness.  A similar set of equations is obtained for the lower adherend.  The familiar 
equation for the displacement of a plate in cylindrical bending is used to describe the deflection of the  
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joint overlap for each adherend, and is given by Eqns. (16) and (17).  Since the joint overlap is 
assumed to behave in cylindrical bending, all terms that contain derivatives with respect to y may be 
neglected.  Applying the assumption of cylindrical bending to the kinematic relationship in Eqn. (7), a 
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reduced form of Eqn. (10) is obtained and inverted to yield Eqn. (18).  Using this constitutive 
equation, a relationship can be determined for the longitudinal and bending normal strain in each 
adherend.  Since the adherends are assumed to behave in cylindrical bending, the loading 
perpendicular to the joint cross-section is neglected, that is yy xy yy xy 0N N M M= = = == = = == = = == = = = .  Thus, the terms 

for longitudinal and bending normal strain can be determined directly from Eqn. (18) and written as 
separate equations.  Assuming laminate symmetry, the longitudinal and bending normal strain can be 
combined to form an expression for the total normal strain along the x-axis at the adherend- adhesive 
interface for each adherend as shown in Eqns. (19) and (20).   
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Relationships for the shear and transverse normal strain in the adhesive are provided by Eqns. (21) 

and (22) in terms of the longitudinal and transverse displacements of the upper and lower  
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adherends.  As a result, the shear and normal strain are assumed to remain constant through the 
thickness of the adhesive.  Additionally, the adhesive is assumed to behave as an isotropic, elastic-   
plastic material.  The plastic material behavior is modeled using the deformation theory of plasticity 
which provides for quasi-static loading that is applied in increasing proportions, otherwise referred to 
as proportional loading.  Assuming the adhesive remains in a state of plane strain, the constitutive  
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Figure 2 Loading equilibrium for a general
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A description of the adhesive yielding behavior is provided in Eqn. (34) in terms of the equivalent 

uniaxial strain term, uεεεε , using a modified version of the von Mises yield criterion that accounts for 
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both the normal and shear components of strain as well as the effects of hydrostatic loading [28].  
Using a numerical model for the stress-strain response of a particular adhesive, the level of adhesive 
yielding is determined along the joint overlap by determining an equivalent uniaxial strain from the 
computed strain field and comparing that to an adhesive yield stress.  Therefore, by using Eqns. (28)-
(34) the complete elastic-plastic strain field in the adhesive layer is determined in an iterative manner 
for a given joint loading and geometry configuration. 
 
 
SINGLE-LAP JOINT MODELS 
 

All the analyses performed for this study evaluated single-lap type joints with adherend and 
adhesive properties given in Tables 1 and 2.  The description of the basic geometry and nomenclature 
for a single-lap joint was given in Fig. 1.  The choice of lamina properties for the upper and lower 
adherends in the quasi-isotropic model was made in order to simulate average laminate properties that 
corresponded to those for the isotropic model given in Table 2.  The in-plane average laminate 
properties that correspond to the [0,45,-45,90]s stacking sequence using the lamina properties in Table 
2 are E1 = E2 = 69.5E03 N/mm2 and a 0.29=ν .  The loading for each of the analyses was a uniform 
tensile load of 400 Newtons, which corresponds to an end joint loading per unit plate width of 

400o
U ====N N/mm, 24.7o

U = −= −= −= −Q  N/mm, and 255.8o
U = −= −= −= −M  N-mm/mm. 



Table 1 Geometry of the single-lap joint models for cases A, B, and C. 
 

Upper adherend thickness, Uh  (mm) 2.0 

Lower adherend thickness, Lh  (mm) 2.0 

Adhesive thickness, t  (mm) 0.05 

Overlap length, jL  (mm) 12.5 

  
 
Table 2 Material properties for the components of the single-lap joint models in cases A, B, and C. 
 

Quasi-isotropic Model Isotropic Model Lamina 
Propertya Upper 

Adherend 
Lower 

Adherend Adhesive 
Upper 

Adherend 
Lower 

Adherend Adhesive 

1E , (N/mm2) 162,000 162,000 1,875 70,000 70,000 1,875 

2E , (N/mm2) 19,300 19,300 1,875 70,000 70,000 1,875 

12ν  0.31 0.31 0.4 0.3 0.3 0.4 

12G , (N/mm2) 11,000 11,000 - - - - 

Laminate stacking 
sequence 

[0,45,-45,90]s [0,45,-45,90]s - - - - 

Yield stress (N/mm2) - - 40.0 - - 40.0 

aSubscripts 1 and 2 denote the longitudinal (fiber) and transverse (matrix) directions of an 
anisotropic lamina, respectively. 

 
 

Three basic evaluations were conducted of the single-lap joint configuration using the anisotropic, 
inelastic-adhesive analysis method developed in this paper.  The first evaluation, case A, was 
performed to compare the results of the present analysis method against those of the classical Goland 
and Reissner closed-form solution.  Since the analysis method by Goland and Reissner assumes linear 
elastic adhesive behavior, the corresponding analysis using the proposed anisotropic, inelastic-
adhesive analysis method was performed without considering adhesive yielding.  The analysis 
method by Bigwood and Crocombe that was developed for isotropic adherends was used to verify the 
inelastic capabilities of the current method in case B.  A modified von Mises yield criteria, given in 
Eqn. (34), was used to evaluate the degradation of the adhesive.  The value of s used in this study was 
1.3, which Raghava et al. determined to be applicable for polymer-type materials.  Additionally, a 
hyperbolic-tangent approximation of the uniaxial stress-strain response used by Bigwood and 
Crocombe was duplicated for comparison purposes and is restated in Eqn. (35) where the asymptotic 
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stress value, A, is 69.3 N/mm2.  Each of the single-lap joint models analyzed for cases A and B 
consist of identical upper and lower adherends that are quasi-isotropic. 

The last evaluation, case C, was performed to highlight the effect of differences in the transverse 
shear moduli between the upper and lower adherends.  Material properties for the upper and lower 
adherends for both the baseline and the modified are as previously shown in Table 2 with the 
exception of the transverse shear modulus.  In the analysis of the baseline joint configuration, the 
value of the transverse shear modulus, G13, is 3.45E03 N/mm2 for both the upper and lower 
adherends.  In the analysis of the modified joint configuration, the same transverse shear modulus is 
used for the upper adherend while the value for the lower adherend is increased by 30% to 4.5E03 
N/mm2.  The analyses conducted in case C included the nonlinear material behavior for the adhesive 
in addition to the shear-deformable adherend behavior. 

 
NUMERICAL RESULTS 
 

Analytically predicted results of the single-lap, adhesively bonded joints considered in this study 
are presented in this section.  A Fortran 95 code was written to solve the system of first-order 
differential equations given in Eqns. (28)-(33) using a variable-step, finite-difference solution 
algorithm developed by IMSL.  Using the author-developed Fortran code and IMSL routine, all of the 
joint models were analyzed in less than five seconds using a laptop personal computer with an 800 
mhz micro-processor and 128 megabytes of RAM. 

The shear and normal stress response for the models analyzed in case A are shown in Fig. 3.  As 
discussed earlier, these models were used to compare the results of the present analysis method 
against those of the classical Goland and Reissner closed-form solution.  The results from the present 
analysis are displayed using a solid curve and stress terms with a superscript A while the results for 
the classical analysis of Goland and Reissner are displayed as dashed curves and stress terms using a 
superscript GR.  Excellent agreement between the present analysis method and the classical method 
by Goland and Reissner is seen for almost the entire elastic shear stress field in 3a and the elastic 
normal stress field in 3b.  The largest deviation between the two methods is found at the location of 
the peak shear stress on the ends of the joint overlap.  An approximately 15% lower peak shear stress 
is predicted by the present analysis method compared to that of Goland and Reissner.  This difference 
is most likely due to the tendency of the analysis method developed by Goland and Reissner to be 
conservative for most cases as a result of approximations made during the formation of their solution.  
These approximations are well documented [29,30] and are a result of neglecting higher-order terms 
within the differential equations of equilibrium as well as simplifications made to certain 
mathematical expressions.  One other possibility for the peak shear stress difference is a slight 
discrepancy between the in-plane stiffness for the adherends in the anisotropic and isotropic joint 
models.  As discussed in the previous section, the in-plane average laminate properties that result 
from the quasi-isotropic stacking sequence using the lamina properties in Table 2 are E1 = E2 = 
69.5E03 N/mm2 and a 0.29=ν .  Although the plate (laminate) properties for each of the models are 
very close to the same value, the lamina properties and stacking sequence chosen for the anisotropic 
analysis provided a slightly more compliant joint.  As a result, the peak shearing stress determined 
from the quasi-isotropic model would tend to be lower than that for the isotropic model. 

The strain and resulting stress response for the second bonded joint evaluation, case B, are 
presented in Figs. 4a and 4b, respectively.  Again, as previously discussed, these models were used to 
compare the present analysis method against the isotropic, elastic-plastic analysis method by 
Bigwood and Crocombe.  The results for the present method are shown by the solid curves in each 
figure while the isotropic analysis results are displayed as dashed curves.  For this case, stresses and 
strains from the anisotropic analysis are denoted by terms with a superscript A while the isotropic 
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analysis is denoted by terms with a superscript I.  The joint geometry for the models used in both the 
isotropic and anisotropic analyses is identical as shown in Table 1.  However, as noted in case A, a 
slight variation is seen between the isotropic adherend properties and the quasi-isotropic laminate 
properties.  In Fig. 4a, a very good agreement is provided between the anisotropic and isotropic 
solutions with a reduction in shear and normal strain from the isotropic to the anisotropic solutions 
seen as the solution moves from the center of the overlap towards the joint edges.  Since the greatest 
shear and normal strain are seen at the joint edges, the solution is much more sensitive to changes at 
those locations.  Therefore, the more compliant behavior of the quasi-isotropic adherends causes a 
reduction in shear and normal stress similar to case A, but to a greater degree due to the inelastic 
solution.  One additional point to note in Fig. 4b is the small drop in the shear stress at the four and 
eight millimeter points along the joint overlap.  This represents the interface between the elastic and 
the plastic zones in the adhesive layer.  Although the solution is continuous for the entire overlap as 
evident by the curves for the strain in Fig. 4a, the calculation for the degraded material properties 
results in a sharp decrease at the elastic-plastic zone interface.  This is only a very localized effect and 
is generally located well away from the peak stress regions. 

A much more significant reduction in peak shear and normal stress is obtained between the 
inelastic solution in case B and the elastic solution from case A of the same joint configuration.  The 
peak shear stress for the elastic solution in Fig. 3a was approximately 120 N/mm2 while the peak 
shear stress for the inelastic solution in Fig. 4b was approximately 44 N/mm2, which corresponds to a 
67 % reduction.  Similarly for the normal stress, a reduction of 67% exists between the 150 N/mm2 
elastic value and the 50 N/mm2 inelastic value.  This significant reduction in adhesive stresses is not 
obtained without a cost as only a few millimeters of the joint overlap are now stressed below 20 
N/mm2 compared to almost eight millimeters in the elastic joint.  Although a much more efficient 
joint may be obtained by allowing a certain portion of the joint to yield, an important note of caution 
is prudent for joints that are intended for long-term use, multiple cycles, or hazardous environments.  
Joints that are intended for these uses may still be designed by taking into account the inelastic 
adhesive behavior; however, it is crucial that a section of the center of the joint overlap remain well 
below the yield stress level to serve as an elastic reserve.  The need to provide a reasonably long, 
lightly loaded elastic trough at the center of fatigue joints was first discussed in detail by Hart-Smith 
[16]. 

The results for the last case, case C, involved changes between the transverse shear stiffness for 
the upper and lower adherends, as previously described, and are given in Fig. 5.  The results for the 
baseline analysis are displayed using solid curves and denoted by terms with a superscript B while the 
modified analysis results are displayed as dashed curves and denoted by terms with a superscript M.  
A noticeable difference between the baseline and modified shear strain are readily apparent in Fig. 5a.  
As the load transfers from the upper adherend to the lower adherend on the left end of the joint 
overlap, the stiffer, lower adherend forces additional adhesive shearing at the edge, but decreases 
more rapidly compared to the baseline joint as the solution moves inboard.  A reverse of this trend is 
seen on the right end of the joint overlap as the peak shear stress is reduced for the modified joint; 
however, a greater degree of straining occurs between the eight and twelve millimeter joint stations.  
Additionally, the entire solution has shifted towards the left end of the joint overlap and taken on a 
more asymmetrical appearance.  As for the normal strain, little or no change in the solution was 
obtained between the two joints. 

The plot of the shear stress for case C is given in Fig. 5b and reveals several interesting trends.  As 
in case B, the transition zone between the elastic and plastic zones is clearly seen around the four and 
eight millimeter joint stations.  From the figure it appears that an increase in joint stiffness resulted in 
a small lengthening of the transition zone between the elastic and plastic regions.  The peak shear 
stress is obtained at the ten-millimeter joint station as the load transfers from the stiffer, lower 
adherend to the more compliant, upper adherend.  The peak shear stress at this point is approximately 
45 N/mm2 while the peak shear stress for the left hand portion of the joint is approximately 41 N/mm2 
at the two-millimeter joint station.  This amounts to a 9% difference between joint ends with a 7%  
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decrease and a 2.5% increase over the baseline solution for the left and right ends of the joint overlap, 
respectively.  Thus, by modifying only the transverse shear stiffness between the upper and lower 
adherends a drop in the shear stress was obtained at one end of the joint overlap while incurring a 
slight increase at the opposite end.  A joint design utilizing this type of tailored stiffness approach 
might be applicable to the transition region of an aircraft skin to a longitudinal stiffener where 
different laminate stiffenesses might be required. 

 
CONCLUDING REMARKS 
 

A new method for evaluating general, adhesively bonded joint overlaps with anisotropic, shear-
deformable adherends and inelastic adhesive behavior that are subjected to combined tensile, shear, 
and bending moment loading was presented.  Rapid solution of a wide variety of joint configurations 
is possible with the Fortran code developed from the proposed theory using a finite-difference 
solution algorithm.  Thus, a tool has been developed that is capable of tailoring the stiffness of the 
composite adherends in an adhesively bonded joint.  Additionally, efficient joint designs are obtained 
by allowing adhesive yielding that can lead to significantly decreased peak shear and normal stress in 
the adhesive. 

  The results of the proposed method were verified using two single-lap joint configurations with 
isotropic adherends from the literature.  Reductions in the peak shear and normal stresses in the 
adhesive layer of approximately 67% were obtained from the elastic to the inelastic solutions.  An 
additional case was presented that showed the effect of varying the transverse shear stiffness between 
the upper and lower adherends for quasi-isotropic laminate stacking sequences.  Using the varying 
transverse shear stiffness joint in case C, the potential for tailoring the joint stiffness was 
demonstrated as a 30% increase in the lower adherend transverse stiffness resulted in a 7% decrease 
at one end of the joint overlap and a 2.5% increase at the opposite end. 
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